Elevated Pulmonary Arterial and Systemic Plasma Aldosterone Levels Associate with Impaired Cardiac Reserve Capacity during Exercise in Left Ventricular Systolic Heart Failure Patients: A Pilot Study


BACKGROUND: Elevated levels of aldosterone are a modifiable contributor to clinical worsening in heart failure with reduced ejection fraction (HFrEF). Endothelin-1 (ET-1), which is increased in HFrEF, induces pulmonary endothelial aldosterone synthesis in vitro. However, whether transpulmonary aldosterone release occurs in humans or aldosterone relates to functional capacity in HFrEF is not known. Therefore, we aimed to characterize ET-1 and transpulmonary aldosterone levels in HFrEF and determine if aldosterone levels relate to peak volume of oxygen uptake (pVO2). METHODS: Data from 42 consecutive HFrEF patients and 18 controls referred for invasive cardiopulmonary exercise testing were analyzed retrospectively. RESULTS: Radial ET-1 levels (median [interquartile range]) were higher in HFrEF patients compared with controls (17.5 [11.5-31.4] vs 11.5 [4.4-19.0] pg/ml, p = 0.04). A significant ET-1 transpulmonary gradient (pulmonary arterial [PA] - radial arterial levels) was present in HFrEF (p < 0.001) but not in controls (p = 0.24). Compared with controls, aldosterone levels (median [interquartile range]) were increased in HFrEF patients in the PA (364 [250-489] vs 581 [400-914] ng/dl, p < 0.01) and radial compartments (366 [273-466] vs 702 [443-1223] ng/dl, p < 0.001). Akin to ET-1, a transpulmonary increase (median [interquartile range]) in aldosterone concentration was also observed between controls and HFrEF patients at rest (7.5 [-54 to 40] vs 61.6 [-13.6 to 165] ng/dl, p = 0.01) and peak exercise (-20.7 [-39.6 to 79.1] vs 25.8 [-29.2 to 109.3] ng/dl, p = 0.02). The adjusted pVO2 correlated inversely with aldosterone levels at peak activity in the PA (r = -0.31, p = 0.01) and radial artery (r = -0.32, p = 0.01). CONCLUSIONS: These data provide preliminary evidence in support of increased transpulmonary aldosterone levels in HFrEF and suggest an inverse relationship between circulating aldosterone and pVO2. Future prospective studies are needed to characterize the functional effects of transpulmonary and circulating aldosterone on cardiac reserve capacity in HFrEF.

Journal of Heart and Lung Transplantation